DSN Progress Report 42-53

July and August 1979

A Reed-Solomon Decoding Program for Correcting Both
Errors and Erasures

R. L. Miller, T. K. Truong, and B. Benjauthrit
Communication Systems Research Section

I. S. Reed

Department of Electrical Engineering
University of Southern California

This article discusses the software implementation of a simplified algorithm for
decoding errors and erasures of Reed-Solomon (R-S) code words using the techniques of
finite field transforms and continued fractions. In particular, random code words from
the (255, 223, 33) R-S code over GF(28) are corrupted by random error and erasure
patterns, and decoded whenever theoretically possible. A matrix of execution times of
this decoder under varying sets of errors and erasure patterns is also included. This matrix
demonstrates the relative amounts of time required for decoding different error and
erasure patterns, as well as the correctness of the algorithms and the software

implementation.

I. Introduction

Recently the authors in Ref. 1 developed a simplified
algorithm for correcting erasures and errors of Reed-Solomon
(R-S) codes over the finite field GF(p™), where p is a prime
and m is an integer. For a space communication link, it was
shown (Ref.2) that a 16-error-correcting R-S code of 255
8-bit symbols, concatenated with a k=7, rate = 1/2 or 1/3,
Viterbi decoded convolutional code, can be used to reduce the
signal-to-noise ratio required to meet a specified bit-error rate.

Such a concatenated code is being considered for the Galileo

project and the NASA End-to-End Data System.

In such a concatenated code, the inner convolutional
decoder is sometimes able to find only two or more equally

102

probable symbols. Then the best policy is to declare an erasure
of the symbol. If the outer R-S code is able to use the
additional information that erasures have occurred, then it is
reasonable to assume that the system performance will be
enhanced.

In this article, an algorithm based on the ideas in Ref. | is
used to correct erasures and errors of R-S code words using a
finite field transform over GF(2®). This algorithm is written in
FORTRANV and is implemented on the UNIVAC 1108
computer. A matrix of decoding times for correcting errors
and erasures of the code words is given at the end of this

paper.

ll. The R-S Decoding Algorithm

The algorithm given in (Ref, 1) was used to correct patterns
of ¢t errors and s erasures of the words of the (255, 223, 33)
R-S code, where 2¢+ s < 33 and the symbols belong to the
finite field GF(2®). Define the following five vectors:

(cq €15 "+ 5Cy54) = €, code vector

(ro, roo ,r254) = r, received vector
(gs Hys** s Bysa) = M, erasure vector

(2 €, e ,e254) = e, error vector

@, I, -+, W,5,) = W, new erasure vector

These vectors are related byr=c+p+eandi=e+ pu.
Suppose that ¢ errors and s erasures occur in the received

vector r of 255 symbols and assume 2¢+ s < 33, Then the
decoding procedure consists of the following steps:

Step 1: Compute the syndromes S, (1 < k< 32) of the

received 255-tuple (ry, 7, - - -, ¥ys5q)s 1€
254 .
S, = Z rot* fork=1,2,---,32 1)
=0

where o is an element of order 255 in GF(28). If S, =0 for
1< k<32, then r is a code word and no decoding is
necessary. Otherwise,

Step 2: Compute T forj=0,1,2,---,s from the erasure
locator polynomial

r(x) = n (x- Z].) = n (—l)iflxs_i)
i=1 =1

where s is the number of erasures in the received vector, and Z;
(1 <j < s)are the known erasure locations. Then compute the
Forney syndromes T; for 1 <i<d- 1- s from the equation

A
T, =% CD/rs, . forl<i<d-1-s ()
j=0
where 7, (1 <j <s) and/S]. (1 <j <32) are known.

Step 3: If 0 < s < 32, then use continued fractions to
determine the error locator polynomial o(x) from the known

T’s (1<i<32-s). For the special case s = 32, it was shown
(Ref. 3) that it is impossible for any decoder to tell whether
there are zero or more additional errors. Thus, for s = 32, the
best policy is not to decode the message at all. If 2¢ + s > 33,
it is shown in Ref. 4 that the continued fraction algorithm will
not determine the correct error locator polynomial and will
(1) either terminate abnormally, (2) terminate normally with a
polynomial whose roots do not represent possible error loca-
tions, or (3) terminate normally with a polynomial whose roots
do represent possible error locations.

In the first two cases, a decoding failure will occur; the
decoder will be unable to decode the received word. In the
third case, a decoding error will occur; there will be no alarm
telling of the inability to decode; the decoder will operate as is
2t + s < 33, The probability of such miscorrections of errors
and erasures of R-S code words is discussed further in Ref. 4.

Step 4: Use a Chien-type search to find the ¢ roots of the
error locator polynomial. If ¢ distinct roots cannot be found
that represent possible error locations, then declare a decoding
failure. Otherwise,

Step 5: Compute the combined erasure and error locator
polynomial from the equation

s+t

T(x) = o(x)7(x) = Z (_l)k?'kxs+t-—k @)
k=0

where o(x) and 7(x) are now known. Then compute the rest of
transform of the erasure and error vector from the equation

s+t
Sg = D, 17, , fore>d-1
k=1

Step 6: Invert the transform of fi at the points correspond-
ing to the known error and erasure locations to obtain the
amplitudes of iI. That is,

254
~ = = k -
u(Z,.)—ei+ui —kz_o SkZ]. forj=1,2,-.-,s+¢

)

where Z. are the known error and erasure locations of 7. Then
subtract from the received word the error and erasure vector
to obtain the corrected code word.

103

ll. Program Design and implementation

The decoding procedure described in the previous section
was implemented on the UNIVAC 1108 computer using
FORTRAN V. This program was used to correct any combina-
tion of ¢ errors and s erasures occurring in the 255-symbol R-S
code words, where 2¢ + s < 33. The overall basic structure of
the program is given in Fig.1. It is divided into a main
program and five major subroutines,

The Main Program: This is the main driver of the rest of
the program, It initializes the decoding process and keeps track
of the elapsed CPU time.

Input: This subroutine generates a random code vector
(polynomial) R(x) for the R-S decoder and then adds errors
and erasures E'(x) to it.

Step 1: The first 32 syndromes of the received vectors as
well as the corrected vectors are calculated in this subroutine.
In case the corrected received word is not an R-S code word,
the subroutine will output the message, “The corrected
received vector is not a codeword.” This is helpful in
confirming the correctness of the program, as well as indicat-
ing that the number of errors and erasures have exceeded the
limits allowable by the decoder.

Step 2: This subroutine computes the Forney syndrome
vector T (Eq. 3) from the erasure vector Z. The erasure locator
polynomial 7(x) (Eq. 2) is also calculated here.

Step 3: The error locator polynomial o(x) is calculated
from the Forney syndrome vector T using the continued

fraction algorithm. The product of the error locator polynom-
ial o(x) and the erasure locator polynomial 7(x) is next
computed (Eq. 4). The coefficients of this erasure and error
locator polynomial are used to compute the remaining terms
Sig, 000, sts’ Also, the locations of the errors are now
determined. (The- erasure locations are known a priori by

definition.)

Step 4: This step directly computes the inverse Fourier
transform of the vector (S, 8, +y Sy5) to obtain the
nonzero error and erasure magnitudes, Finally, the received
vector is corrected to provide an estimate of transmitted code
word.

IV. Simulation Results

The computation times for decoding numerous code words
that were corrupted by errors and erasures are given in
Table 1. These results were obtained by computing each entry
in Table 1 five times and then averaging. Along any row or
column, the computation times tend to increase with the row
or column indices until decoding failures occur due to an
excess of allowable errors and erasures.

V. Summary

A software Reed-Solomon decoder has been developed for
the (255, 223, 33) R-S code whose symbols belong to GF(28).
The simulation indicates that the decoder correctly recon-
structs the transmitted code word from the received word if
the code word has been corrupted by ¢ errors and s erasures,
where 2 +5 <33,

Acknowledgment

This work was supported in part by the U.S. Air Force Office of Scientific Research
under Grant Number AFOSR 75-2798 and also in part by NASA Contract NAS7-100.

104

References

1. I. S. Reed and T. K, Truong, “A Simplified Algorithm for Correcting Both Errors and
Erasures of R-S Codes,” in The Deep Space Network Progress Report 4248, Jet
Propulsion Laboratory, Pasadena, California, September 1978.

2. J. Odenwalder, et al., Hybrid Coding Systems Study Final Report Linkabit Corp.,
NASA CR114, 486, September 1972.

3. E. R. Berlekamp and J. L. Ramsey “Readable Erasures Improve the Performance of
Reed-Solomon Codes” IEEE Transactions on Information Theory, Vol. IT-24, No. 5,
Sept. 1978.

4. R. L. Miller, I. S. Reed, and T. K. Truong, “The Probability of Incorrectly Decoding
Errors and Erasures and Reed-Solomon Code Words,” submitted to JEEE Trans. on
Inform Theory.

105

Table 1. Decoder execution times in seconds

Erasures

o
SOV oINS WD =O

W WA NRN NN NN e e = e
- O WV DHDWNRNFR OWOROIAWU R WN=

0.314
0.342
0.377
0.382
0.439
0.437
0.439
0.474
0.492
0.583
0.659
0.561
0.606
0.656
0.620
0.693
0.662
0.802
0.858
0.852
0.756
0.758
0.750
0.769
0.811
0.829
0.872
0.960
0.914
1.028
0.985
0.960

0.354
0.375
0.427
0.421
0.456
0.471
0.472
0.492
0.610
0.585
0.607
0.695
0.661
0.638
0.760
0.778
0.735
0.744
0.720
0.747
0.740
0.763
0.805
0.807
0.902
0.857
0.920
0.960
0.908
0.930
0.945
0.374

0.397
0.466
0.439
0.455
0.466
0.483
0.552
0.625
0.647
0.665
0.668
0.682
0.681
0.687
0.716
0.719
0.715
0.712
0.756
0.771
0.841
0.954
0.956
0.825
0.893
0.906
0.907
0.935
0.935
0.374
0.826

0.463
0.472
0.455
0.481
0.524
0.582
0.572
0.612
0.661
0.626
0.683
0.661
0.756
0.737
0.740
0.749
0.766
0.800
0.825
0.791
0.935
0.911
0.898
0.858
0.892
0.945
0.928
0.340
0.507

0.529
0.483
0.485
0.511
0.594
0.583
0.574
0.588
0.640
0.625
0.730
0.741
0.691
0.708
0.735
0.840
0.758
0.789
0.806
0.802
0.831
0.918
0.875
0.910
0.907
0.342
0.372

0.483
0.495
0.557
0.571
0.634
0.596
0.631
0.660
0.648
0.664
0.724
0.763
0.741
0.740
0.779
0.863
0.860
0.852
0.980
0.963
0.878
0.899
1.049
0.429
0.439

0.515
0.549
0.561
0.574
0.588
0.609
0.696
0.782
0.699
0.720
0.746
0.733
0.753
0.800
0.785
0.824
0.833
0.841
0.859
0.897
0.972
0.386
0.406

0.564
0.584
0.616
0.607
0.629
0.638
0.656
0.679
0.692
0.741
0.767
0.770
0.783
0.816
0.831
0.981
0.907
0.864
0.879
0.347
0.428

Errors

8

0.608
0.625
0.609
0.744
0.761
0.763
0.697
0.770
0.820
0.781
0.769
0.818
0.919
0.901
0.924
0.883
0.912
0.402
0.506

0.681
0.661
0.737
0.757
0.679
0.759
0.724
0.817
0.897
0.840
0.823
0.811
0.830
0.858
0.949
0.424
0.481

10

0.750
0.709
0.813
0.697
0.710
0.782
0.808
0.790
0.784
0.812
0.936
0.849
0.912
0.356
0.449

11

0.760
0.771
0.703
0.779
0.778
0.810
0.794
0.815
0.864
0.918
1.034
0.405
0.462

12

0.734
0.746
0.811
0.814
0.848
0.868
0.930
0.943
0.906
0432
0.485

13

0.812
0.792
0.899
0.840
0.943
1.054
0.997
0.401
0.521

14

0.777
0.887
0.871
0.836
0.956
0.409
0.521

15

0.940
0.867
0.837
0.429
0.577

16 17
0.878 0.592
0414
0.577

106

MAIN

DETERMINE ELAPSED
CPU TIME

1

INPUT

GENERATE A RANDOM R-$
CODE VECTOR THEN ADD
RANDOM ERRORS AND
ERASURES TO IT

|

STEP 1

COMPUTE SYNDROMES
S‘, Sor ees 532

STEP 2

COMPUTE t(x),

COMPUTE FORNEY SYNDROMES
FROM t(x) AND 5; FOR
i=1,2...,3

l

STEP 3

COMPUTE o(x), ITS ROOTS,
AND S33, ... ,S255 FROM
o(x)r(x)

STEP 4

COMPUTE INVERSE
TRANSFORM OF

(S], SZ’ [5255)

TO OBTAIN ERROR AND
ERASURE VECTOR AND
CORRECTED RECEIVED VECTOR

RETURN

Fig. 1. Basic functional structures of R-S decoding program using

transform over GF (28) and continued fractions

107

